I will take you through the basics of LED packaging.

The LED (Light Emitting Diode) package refers to the package of the light-emitting chip, which is quite different from the integrated circuit package. LED packaging is not only required to protect the wick, but also to be able to transmit light, so the LED package has special requirements for the packaging material.

Package introduction

LED packaging technology is mostly developed and evolved on the basis of discrete device packaging technology, but it has great speciality. In general, the die of the discrete device is sealed within the package, and the package functions primarily to protect the die and complete the electrical interconnection. The LED package is to complete the output electrical signal, protect the normal operation of the die, output: visible light work, both electrical parameters, optical design and technical requirements, can not simply use the discrete device package for LED.

Since the 1990s, LED chip and material fabrication technology has made many breakthroughs in research and development, transparent substrate trapezoidal structure, textured surface structure, chip flip-chip structure, commercial ultra-high brightness (above 1cd) red, orange, Yellow, green and blue LED products have been asked one after another. In 2000, they began to be used in special lighting with low and medium light flux. The upper and middle reaches of LED industry have received unprecedented attention, further promoting the downstream packaging technology and industrial development. Different types of package structures and sizes, different luminescent color dies and their two-color or three-color combination can produce a variety of Series, variety, specifications of the product.

Technical principle

Due to the complicated structure and process, the high-power LED package directly affects the performance and life of the LED, especially the high-power white LED package is a hot spot in research. The functions of the LED package mainly include: 1. mechanical protection to improve reliability; 2. enhanced heat dissipation to reduce chip junction temperature and improve LED performance; 3. optical control, improve light extraction efficiency, optimize beam distribution; 4. power supply management, Includes AC/DC transitions, as well as power control.

The choice of LED packaging methods, materials, structures, and processes is primarily determined by factors such as chip structure, optoelectronic/mechanical characteristics, specific applications, and cost. After more than 40 years of development, LED packaging has experienced the development stages of stent (Lamp LED), SMD (SMD LED), and power LED (Power LED). With the increase of chip power, especially the development of solid-state lighting technology, new and higher requirements are put forward for the optical, thermal, electrical and mechanical structures of LED packages. In order to effectively reduce the thermal resistance of the package and improve the light extraction efficiency, a new technical idea must be adopted for the package design.

About LED package structure description

The core light-emitting portion of the LED is a pn junction die composed of a p-type and an n-type semiconductor. When a minority carrier injected into the pn junction is combined with a majority carrier, visible light, ultraviolet light or near-infrared light is emitted. However, the photons emitted by the pn junction are non-directional, that is, the same probability is emitted in all directions. Therefore, not all the light generated by the die can be released, depending on the quality of the semiconductor material, the structure of the die, and the geometry. The internal structure of the package and the encapsulation material are required to improve the internal and external quantum efficiency of the LED. In a conventional Φ5mm LED package, a square die with a side length of 0.25 mm is bonded or sintered on a lead frame. The positive electrode of the die passes through a spherical contact point and a gold wire, and is bonded to an inner lead connected to a pin, and the negative electrode passes through the reflection. The cup is connected to the other leg of the lead frame and then the top is encapsulated with epoxy. The function of the reflector cup is to collect the light emitted from the side of the die and the interface and emit it in the desired direction. The top encapsulated epoxy resin is shaped to protect the die from external attack; to use different shapes and material properties (with or without colorants), to act as a lens or diffuse lens Function, control the divergence angle of light; the difference between the refractive index of the die and the refractive index of the air is too large, so that the critical angle of total reflection inside the die is small, and only a small part of the light generated by the active layer is taken out, most of which are easy to be in the tube The inside of the core is absorbed by multiple reflections, and it is easy to cause total reflection to cause excessive light loss. The epoxy resin with corresponding refractive index is used as a transition to improve the light exiting efficiency of the die. The epoxy resin used to form the envelope must have moisture resistance, insulation, mechanical strength, and a high refractive index and transmittance for light emitted from the die. The choice of packaging materials with different refractive indices, the influence of package geometry on photon escape efficiency is different, and the angular distribution of luminous intensity is also related to the structure of the die, the way of light output, and the material and shape of the package lens. If a pointed resin lens is used, the light can be concentrated in the axial direction of the LED, and the corresponding viewing angle is small; if the resin lens at the top is circular or planar, the corresponding viewing angle will increase.

Under normal circumstances, the LED's emission wavelength changes with temperature by 0.2-0.3nm/°C, and the spectral width increases, which affects the color vividness. In addition, when the forward current flows through the pn junction, the heating loss causes the junction region to produce a temperature rise. At around 1°C, the luminous intensity of the LED is reduced by about 1%, and the heat dissipation of the package is maintained. Purity and luminescence intensity are very important. In the past, the method of reducing the driving current was used to reduce the junction temperature. The driving current of most LEDs was limited to about 20 mA. However, the light output of LEDs increases with the increase of current. Many power LEDs can reach 70mA, 100mA or even 1A. It needs to improve the package structure, the new LED package design concept and low thermal resistance package structure and technology. Improve thermal properties. For example, a large-area chip flip-chip structure is used, and a silver paste with good thermal conductivity is used to increase the surface area of ​​the metal support, and the silicon carrier of the solder bump is directly mounted on the heat sink. In addition, in the application design, the thermal design and thermal conductivity of the PCB circuit board are also very important.

After entering the 21st century, LED's high efficiency, ultra-high brightness, full colorization continue to develop and innovate. Red and orange LED light effects have reached 100Im/W, green LEDs are 501m/W, and the luminous flux of single LEDs has reached dozens. Im. LED chips and packages no longer follow the traditional design concept and manufacturing mode. In terms of increasing the light output of the chip, research and development is not limited to changing the amount of impurities in the material, lattice defects and dislocations to improve internal efficiency, and how to improve the tube. Core and package internal structure, enhance the probability of photon emission inside the LED, improve light efficiency, solve heat dissipation, light extraction and heat sink optimization design, improve optical performance, accelerate surface mount SMD process is the mainstream direction of industry research and development.

Since the 1990s, LED chip and material fabrication technology has made many breakthroughs in research and development, transparent substrate trapezoidal structure, textured surface structure, chip flip structure, commercial ultra-high brightness (above 1cd) red, orange, Yellow, green, and blue LED products have been asked one after another. As shown in Table 1, in 2000, applications in low- and medium-light flux special lighting were applied. The upper and middle reaches of LED industry have received unprecedented attention, further promoting the downstream packaging technology and industrial development. Different types of package structures and sizes, different luminescent color dies and their two-color or three-color combination can produce a variety of Series, variety, specifications of the product.

Of course, it is also classified according to the characteristics of the color of the light, the material of the chip, the brightness of the light, the size, and the like. A single die generally constitutes a point source, and a plurality of die assemblies generally constitute a surface source and a line source for information, status indication, and display. The illuminating display also uses a plurality of dies, through appropriate connections of the dies (including series and Parallel) combined with a suitable optical structure to form the illumination segment and the illumination point of the illuminated display. Surface mount LEDs can gradually replace pin-type LEDs, and the application design is more flexible. It has occupied a certain share in the LED display market and has an accelerated development trend. Some solid-state lighting sources have been launched, which will become the medium and long-term development direction of LEDs in the future.

KNBL1-32 Residual Current Circuit Breaker With Over Load Protection

KNBL1-32 TWO FUNCTION : MCB AND RCCB FUNCTIONS

leakage breaker is suitable for the leakage protection of the line of AC 50/60Hz, rated voltage single phase 240V, rated current up to 63A. When there is human electricity shock or if the leakage current of the line exceeds the prescribed value, it will automatically cut off the power within 0.1s to protect human safety and prevent the accident due to the current leakage.
leakage breaker can protect against overload and short-circuit. It can be used to protect the line from being overloaded and short-circuited as wellas infrequent changeover of the line in normal situation. It complies with standard of IEC/EN61009-1 and GB16917.1.


KNBL1-32 Residual Current Circuit Breaker,Residual Current Circuit Breaker with Over Load Protection 1p,Residual Current Circuit Breaker with Over Load Protection 2p

Wenzhou Korlen Electric Appliances Co., Ltd. , https://www.zjmoldedcasecircuitbreaker.com